硕士生导师

您目前的位置: 首页» 团队队伍» 硕士生导师» 讲师

秦芳云

秦芳云.png

个人简介

秦芳云,女,yl9193永利讲师。2020年11月获北京航空航天大学博士学位,同年入职永利官网做团队博士后,随后留校任教。主要从事人工智能软件系统可靠性的相关研究。近年来在TETC、TOSEM、JSS、TR、KBS、ISSRE等国际期刊和会议发表论文10余篇。


办公地点:北二区教学楼219室

联系方式:fyqin@cnu.edu.cn


主持/参与科研项目

[1] 软件老化缺陷度量及其跨项目缺陷预测方法研究,计算机软件新技术国家重点实验室,2022年8月-2024年7月,主持,在研

[2] 软件代码缺陷预测分类工具开发,北京计算机技术及应用研究所,2021.7-2021.12,主持,结题

[3] 基于迁移学习的跨项目软件老化缺陷预测研究,北京市博士后科研活动经费资助项目,2021.5-2023.6,主持,结题

[4] 东风微内核操作系统信号量和安全分区的形式化验证,2023.2-2023.12,参与,结题

[5] 基于环境多样性的软件容错及其应用研究,2019.1-2022.12,国家自然科学基金面上项目,参与,结题

[6] 面向运行环境依赖缺陷的软件自动化调试技术研究,2018.1-2021.12,国家自然科学基金面上项目,参与,结题


科研论文

[1] Qin, F., Zheng, Z., Sui, Y., Gong, S., Shi, Z., & Trivedi, K. S. (2024). Cross-project concurrency bug prediction using domain-adversarial neural network. Journal of Systems and Software, 214, 112077. (CCF B)

[2] Wan, X., Zheng, Z., Qin, F., Lu, X., & Qiu, K. (2024). Adjusted Trust Score: A Novel Approach for Estimating the Trustworthiness of Software Defect Prediction Models. IEEE Transactions on Reliability.(JCR Q1)

[3] Wan, X., Zheng, Z., Qin, F., & Lu, X. (2023). Data Complexity: A New Perspective for Analyzing the Difficulty of Defect Prediction Tasks. ACM Transactions on Software Engineering and Methodology.(CCF A)

[4] Qin, F., Zheng, Z., Wan, X., Liu, Z., & Shi, Z. (2023). Predicting aging-related bugs using network analysis on aging-related dependency networks. IEEE Transactions on Emerging Topics in Computing.(JCR Q1)

[5] Liu, Y., Zheng, Z., Qin, F.*, Zhang, X., & Yao, H. (2022). A residual convolutional neural network based approach for real-time path planning. Knowledge-Based Systems, 242, 108400. (JCR Q1)

[6] Wang, Y., Cao, X., Qin, F., & Tong, L.(2022). Vulnerability analysis of the Chinese coupled aviation and high-speed railway network. Chinese Journal of Aeronautics, 35(12), 189-199.(JCR Q1)

[7] Qin, F., Wan, X., & Yin, B. (2020). An empirical study of factors affecting cross-project aging-related bug prediction with TLAP. Software Quality Journal, 1-28. (JCR Q2) 

[8] Liu, Y., Zheng, Z., Qin, F. (2020). Yang, L. I. U., Zheng, Z., & Fangyun, Q. I. N. (2021). Homotopy based optimal configuration space reduction for anytime robotic motion planning. Chinese Journal of Aeronautics, 34(1), 364-379. (JCR Q1)

[9] Qin, F., Zheng, Z., Qiao, Y., & Trivedi, K. S. (2019). Studying aging-related bug prediction using cross-project models. IEEE Transactions on Reliability, 68(3), 1134-1153. (JCR Q1)

[10] Wan, X., Zheng, Z., Qin, F., Qiao, Y., & Trivedi, K. S. (2019, October). Supervised representation learning approach for cross-croject aging-related bug prediction. In 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE) (pp. 163-172). IEEE. (CCF B)

[11] Qiao, Y., Zheng, Z., Fang, Y., Qin, F., Trivedi, K. S., & Cai, K. Y. (2018). Two-level rejuvenation for Android smartphones and its optimization. IEEE Transactions on Reliability, 68(2), 633-652.(JCR Q1)

[12] Qin, F., Zheng, Z., Li, X., Qiao, Y., & Trivedi, K. S. (2017, January). An empirical investigation of fault triggers in android operating system. In 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC) (pp. 135-144). IEEE.

[13] Qiao, Y., Zheng, Z., & Qin, F. (2016, October). An empirical study of software aging manifestations in android. In 2016 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW) (pp. 84-90). IEEE.

[14] Qin, F., Zheng, Z., Bai, C., Qiao, Y., Zhang, Z., & Chen, C. (2015, August). Cross-project aging-related bug prediction. In 2015 IEEE International Conference on Software Quality, Reliability and Security (pp. 43-48). IEEE.(CCF C)

[15] Gao, Y., Zheng, Z., & Qin, F. (2014). Analysis of Linux kernel as a complex network. Chaos, Solitons & Fractals, 69, 246-252.(JCR Q2)


学术服务

[1] International Journal of Computational Intelligence Systems (Springer Nature Press)期刊副主编

[2] ISSRE(CCF B)、QRS(CCF C)、DeIS、DCCS等会议程序委员会委员,DeIS 2022程序委员会主席

[3] JSS、KBS、TR、ISSRE、QRS、SQJ、RESS、IJCIS等期刊及会议审稿人。